Treeable CBERs are Classifiable by ℓ_{1}

Shaun Allison

University of Toronto
October 26, 2023

This work was done while at:

1. Carnegie Mellon University, advised by Clinton Conley
2. Hebrew University of Jerusalem, hosted by Omer Ben-Neria
3. University of Toronto, hosted by Spencer Unger

TABLE OF CONTENTS

1 Background and context 3
2 Results 7
3 The negative answer 8
4 The positive answer 16
5 Final thoughts 18
6 Preprint 19

BACKGROUND AND CONTEXT

Invariant descriptive set theory is the study of definable equivalence relations and reductions between them.

A Polish space is a separable topological space with a compatible complete metric.

A Borel equivalence relation on a Polish space X is an equivalence relation on X which is Borel as a subset of $X \times X$.

BACKGROUND AND CONTEXT

A Borel reduction from an equivalence relation E living on Polish X to an equivalence relation F living on Polish Y is a Borel function $f: X \rightarrow Y$ satisfying $x E y$ if and only if $f(x) F f(y)$.

By orbit equivalence relation, we will be referring to those that are induced by continuous actions of Polish groups on Polish spaces.

Say that an equivalence relation is classifiable by a Polish group G if and only if it is Borel reducible to an orbit equivalence relation induced by G.

BACKGROUND AND CONTEXT

A Borel equivalence relation is called countable (resp. finite) if every class is countable (resp. finite)

Feldman-Moore: every countable Borel equivalence relation (CBER) is (up to a change of compatible Polish topology) an orbit equivalence relation induced by a countable group.

A CBER E is hyperfinite if $E=\bigcup_{n} F_{n}$ where each F_{n} is a finite Borel equivalence relation.

Slaman-Steel: A CBER is hyperfinite if and only if classifiable by \mathbb{Z}.

BACKGROUND AND CONTEXT

Theorem 1 (Gao-Jackson [GJ15])

Let Δ be a countable discrete abelian group and $\Delta \curvearrowright X$ a continuous action on a Polish space. Then E_{X}^{Δ} is hyperfinite.

Hjorth: must every CBER classifiable by an abelian Polish group be hyperfinite?

BACKGROUND AND CONTEXT

Theorem 1 (Gao-Jackson [GJ15])

Let Δ be a countable discrete abelian group and $\Delta \curvearrowright X$ a continuous action on a Polish space. Then E_{X}^{Δ} is hyperfinite.

Hjorth: must every CBER classifiable by an abelian Polish group be hyperfinite?

Ding-Gao: Every CBER classifiable by a non-Archimedean abelian Polish group is hyperfinite [DG17]

Cotton: Every CBER classifiable by a locally-compact abelian Polish group is hyperfinite [Cot19]

Results

Theorem 2 (A. [All])

If E is a treeable CBER then E is classifiable by an abelian Polish group (in particular, ℓ_{1}).

The free part of the Bernoulli shift of F_{2} is treeable but not hyperfinite [JKL]. Thus the answer to Hjorth's question is no.

On the other hand:

Theorem 3 (A. [All])
Any CBER classifiable by \mathbb{R}^{ω} is hyperfinite.

THE NEGATIVE ANSWER

If E is treeable that means there is a Borel tree T on X such that $E=E_{T}$. Up to Borel bi-reducibility we can assume the treeing is locally-finite [JKL02].

A Polish edge labeling is a Polish space L and a Borel injective function $\ell: L \rightarrow T$ such that for every $(x, y) \in T$, exactly one of (x, y) and (y, x) is in $\ell[L]$.

THE NEGATIVE ANSWER

If E is treeable that means there is a Borel tree T on X such that $E=E_{T}$. Up to Borel bi-reducibility we can assume the treeing is locally-finite [JKL02].

A Polish edge labeling is a Polish space L and a Borel injective function $\ell: L \rightarrow T$ such that for every $(x, y) \in T$, exactly one of (x, y) and (y, x) is in $\ell[L]$.

Let $V(L)$ be the vector space generated by L, extend ℓ to $L \cup-L$ in the obvious way. We call $p=l_{0}+\ldots+l_{n}$ for $l_{i} \in L \cup-L$ a path label from x to y iff some rearrangement of $\ell\left(l_{0}\right), \ldots, \ell\left(l_{n}\right)$ is a path from x to y.

Notice that if p is a path label from x to y, and q is a path label from y to z, then $p+q$ is a path label from x to z.

THE NEGATIVE ANSWER

Consider the orbit equivalence relation induced by the action $V(L) \curvearrowright \mathcal{P}(V(L) \times X)$ by

$$
p \cdot A=\{(q+p, x) \mid(q, x) \in A\} .
$$

THE NEGATIVE ANSWER

Consider the orbit equivalence relation induced by the action $V(L) \curvearrowright \mathcal{P}(V(L) \times X)$ by

$$
p \cdot A=\{(q+p, x) \mid(q, x) \in A\} .
$$

We have a reduction from E_{T} by

$$
x \mapsto\left\{(p, y) \mid p \text { is the unique path label from } x \text { to } y, y E_{T} x\right\} .
$$

The negative answer

Consider the orbit equivalence relation induced by the action $V(L) \curvearrowright \mathcal{P}(V(L) \times X)$ by

$$
p \cdot A=\{(q+p, x) \mid(q, x) \in A\} .
$$

We have a reduction from E_{T} by

$$
x \mapsto\left\{(p, y) \mid p \text { is the unique path label from } x \text { to } y, y E_{T} x\right\} .
$$

Two problems:

1. $V(L)$ is not a Polish group
2. $\mathcal{P}(V(L) \times X)$ is far from a Polish space.

The negative answer

Problem 1: $V(L)$ is not a Polish group

Instead, we use the free Banach space over L denoted $B(L)$.

Equip $V(L)$ with the mass transportation distance norm (explain visually). Then take $B(L)$ to be the completion with respect to this norm, which is separable as long as L is.

THE NEGATIVE ANSWER

Problem 2: $\mathcal{P}(B(L) \times X)$ is far from a Polish space.

Given a Polish space Y, then $\mathcal{F}(Y)$ denotes the space of all closed subsets of Y with the Effros Borel structure. Can be made Polish and natural continuous action $B(L) \curvearrowright \mathcal{F}(B(L) \times X)$.

THE NEGATIVE ANSWER

Problem 2: $\mathcal{P}(B(L) \times X)$ is far from a Polish space.

Given a Polish space Y, then $\mathcal{F}(Y)$ denotes the space of all closed subsets of Y with the Effros Borel structure. Can be made Polish and natural continuous action $B(L) \curvearrowright \mathcal{F}(B(L) \times X)$.

Assume $\ell: L \rightarrow T$ is stretched, which means that $d(p, q)>1 / 4$ for any two distinct path labels starting at x. Then

$$
x \mapsto\left\{(p, y) \mid \ell(p) \text { is the unique path label from } x \text { to } y, y E_{T} x\right\} .
$$

is in fact a map from X to $\mathcal{F}(B(L) \times X)$.

THE NEGATIVE ANSWER

Lemma 1

Let T be a locally-finite Borel tree on Polish X. Then there is a stretched Polish edge labeling $\ell: L \rightarrow T$.

By fixing a Borel linear order on X and by the fact that every standard Borel space can be made Polish, we have a Polish edge labeling $\ell_{0}: L_{0} \rightarrow T$.

THE NEGATIVE ANSWER

Lemma 1

Let T be a locally-finite Borel tree on Polish X. Then there is a stretched Polish edge labeling $\ell: L \rightarrow T$.

By fixing a Borel linear order on X and by the fact that every standard Borel space can be made Polish, we have a Polish edge labeling $\ell_{0}: L_{0} \rightarrow T$.

For $n \in \omega$, let G^{n} be the graph on L_{0} where l_{0}, l_{1} are adjacent if there is a path of length at most 2^{n} between $\ell\left(l_{0}\right), \ell\left(l_{1}\right)$.

Each G_{T}^{n} is a locally finite Borel graph and thus has a countable proper Borel coloring $c_{n}: L_{0} \rightarrow \omega$.

THE NEGATIVE ANSWER

Let τ be a compatible Polish topology on L_{0} in which each c_{n} is continuous.

Let $c: L_{0} \rightarrow \omega^{\omega}$ be $c(l)=\left\langle c_{n}(l) \mid n \in \omega\right\rangle$.

The negative answer

Let τ be a compatible Polish topology on L_{0} in which each c_{n} is continuous.

Let $c: L_{0} \rightarrow \omega^{\omega}$ be $c(l)=\left\langle c_{n}(l) \mid n \in \omega\right\rangle$.

Now let L be the graph of c equipped with the product topology of τ and the usual topology on Baire space.

Let ℓ be the projection onto the first coordinate composed with ℓ_{0}.

THE NEGATIVE ANSWER

Given $x, y \in \omega^{\omega}$, let $d_{B}(x, y)$ be $1 / 2^{n}$ where n is least such that $x(n) \neq y(n)$.

Let d_{0} be any compatible complete metric for $\left(L_{0}, \tau\right)$. Then let

$$
d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=d_{0}\left(x, x^{\prime}\right)+d_{B}\left(y, y^{\prime}\right)
$$

be the metric on L.

THE NEGATIVE ANSWER

Given $x, y \in \omega^{\omega}$, let $d_{B}(x, y)$ be $1 / 2^{n}$ where n is least such that $x(n) \neq y(n)$.

Let d_{0} be any compatible complete metric for $\left(L_{0}, \tau\right)$. Then let

$$
d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=d_{0}\left(x, x^{\prime}\right)+d_{B}\left(y, y^{\prime}\right)
$$

be the metric on L.

Given a path label $p \in B(L)$ of length between 2^{n} and 2^{n+1} then for any l, l^{\prime} appearing in the path we have $\left(l, l^{\prime}\right) \in G^{n+1}$ and thus $d\left(l, l^{\prime}\right) \geq 1 / 2^{n+1}$.

In particular, $\|p\| \geq \frac{1}{2}\left[2^{n} \times 1 / 2^{n+1}\right]=1 / 4$.

The negative answer

Every orbit equivalence relation induced by an abelian Polish group can be lifted to an action of ℓ_{1} by Mackey-Hjorth [see e.g. [GP03]]

This completes the proof of the first result.

The POsITIVE ANSWER

Theorem 4 (A.)
Any CBER classifiable by \mathbb{R}^{ω} is hyperfinite.
Follows from ideas of earlier result (further developing ideas from work of Ding-Gao on non-Archimedean abelian Polish groups)

Theorem 5 (A. [All23])

Any orbit equivalence relation that is Π_{3}^{0} and classifiable by non-Archimedean abelian Polish group is Borel-reducible to E_{0}^{ω}.
combined with

Theorem 6 (Cotton [Cot19])

Any CBER classifable by a locally compact abelian Polish group is hyperfinite.

THE POSITIVE ANSWER

Using the Hjorth analysis of Polish group actions, we get

Proposition 1

Any orbit equivalence relation that is Π_{3}^{0} and classifiable by a countable product of locally-compact abelian Polish groups is Borel-reducible to E_{0}^{ω}.

Then for the final result we just apply the following dichotomy theorem.
Theorem 7 (Hjorth-Kechris [HK97])
If $E \leq_{B} E_{0}^{\omega}$ then either $E \leq_{B} E_{0}$ or $E_{0}^{\omega} \leq_{B} E$.

Final thoughts

Josh Frisch and Forte Shinko claim that with an additional step one can show that in fact every CBER is classifiable by ℓ_{1}.

We don't know if there is an equivalence relation classifiable by a TSI Polish group but not by any abelian Polish group.

Preprint

Countable Borel treeable equivalence relations are classifiable by ℓ_{1} https://arxiv.org/abs/2305.01049

Thank you!

References I

囯 S．Allison，Countable borel treeable equivalence relations are classifiable by ℓ_{1} ．
国 S．Allison，Non－archimedean TSI Polish groups and their potential Borel complexity spectrum， 2023.

围 M．R．Cotton，Abelian group actions and hypersmooth equivalence relations， 2019，Ph．D．thesis at University of North Texas．

圊 L．Ding and S．Gao，Non－archimedean abelian Polish groups and their actions， Adv．Math． 307 （2017），312－343．

国 S．Gao and S．Jackson，Countable abelian group actions and hyperfinite equivalence relations，Invent．Math． 201 （2015），309－383．

国 S．Gao and V．Pestov，On a universality property of some abelian Polish groups，Fund．Math． 179 （2003），1－15．

References II

[ī G. Hjorth and A. S. Kechris, New dichotomies for Borel equivalence relations, Bull. Symbolic Logic 3 (1997), 329-346.

国 S. Jackson, A. S. Kechris, and A. Louveau, Countable Borel equivalence relations, J. Math. Log. 2 (2002), 1-80.

