Treeable CBERs are classifiable by ℓ_1

Shaun Allison

University of Toronto

October 26, 2023

This work was done while at:

- 1. Carnegie Mellon University, advised by Clinton Conley
- 2. Hebrew University of Jerusalem, hosted by Omer Ben-Neria
- 3. University of Toronto, hosted by Spencer Unger

TABLE OF CONTENTS

1	Background and context
2	Results
3	The negative answer
4	The positive answer
5	Final thoughts
6	Preprint

Invariant descriptive set theory is the study of definable equivalence relations and reductions between them.

A Polish space is a separable topological space with a compatible complete metric.

A Borel equivalence relation on a Polish space *X* is an equivalence relation on *X* which is Borel as a subset of $X \times X$.

A Borel reduction from an equivalence relation *E* living on Polish *X* to an equivalence relation *F* living on Polish *Y* is a Borel function $f : X \to Y$ satisfying x E y if and only if f(x) F f(y).

By orbit equivalence relation, we will be referring to those that are induced by continuous actions of Polish groups on Polish spaces.

Say that an equivalence relation is classifiable by a Polish group *G* if and only if it is Borel reducible to an orbit equivalence relation induced by *G*.

A Borel equivalence relation is called countable (resp. finite) if every class is countable (resp. finite)

Feldman-Moore: every countable Borel equivalence relation (CBER) is (up to a change of compatible Polish topology) an orbit equivalence relation induced by a countable group.

A CBER *E* is hyperfinite if $E = \bigcup_n F_n$ where each F_n is a finite Borel equivalence relation.

Slaman-Steel: A CBER is hyperfinite if and only if classifiable by \mathbb{Z} .

Theorem 1 (Gao-Jackson [GJ15])

Let Δ *be a countable discrete abelian group and* $\Delta \curvearrowright X$ *a continuous action on a Polish space. Then* E_X^{Δ} *is hyperfinite.*

Hjorth: must every CBER classifiable by an abelian Polish group be hyperfinite?

Theorem 1 (Gao-Jackson [GJ15])

Let Δ *be a countable discrete abelian group and* $\Delta \curvearrowright X$ *a continuous action on a Polish space. Then* E_X^{Δ} *is hyperfinite.*

Hjorth: must every CBER classifiable by an abelian Polish group be hyperfinite?

Ding-Gao: Every CBER classifiable by a non-Archimedean abelian Polish group is hyperfinite [DG17]

Cotton: Every CBER classifiable by a locally-compact abelian Polish group is hyperfinite [Cot19]

RESULTS

Theorem 2 (A. [All])

If E is a treeable CBER then E is classifiable by an abelian Polish group (in particular, ℓ_1 *).*

The free part of the Bernoulli shift of F_2 is treeable but not hyperfinite [JKL]. Thus the answer to Hjorth's question is no.

On the other hand:

Theorem 3 (A. [All])

Any CBER classifiable by \mathbb{R}^{ω} is hyperfinite.

If *E* is *treeable* that means there is a Borel tree *T* on *X* such that $E = E_T$. Up to Borel bi-reducibility we can assume the treeing is locally-finite [JKL02].

A *Polish edge labeling* is a Polish space *L* and a Borel injective function $\ell : L \to T$ such that for every $(x, y) \in T$, exactly one of (x, y) and (y, x) is in $\ell[L]$.

If *E* is *treeable* that means there is a Borel tree *T* on *X* such that $E = E_T$. Up to Borel bi-reducibility we can assume the treeing is locally-finite [JKL02].

A *Polish edge labeling* is a Polish space *L* and a Borel injective function $\ell : L \to T$ such that for every $(x, y) \in T$, exactly one of (x, y) and (y, x) is in $\ell[L]$.

Let V(L) be the vector space generated by L, extend ℓ to $L \cup -L$ in the obvious way. We call $p = l_0 + ... + l_n$ for $l_i \in L \cup -L$ a *path label* from x to y iff some rearrangement of $\ell(l_0), ..., \ell(l_n)$ is a path from x to y.

Notice that if *p* is a path label from *x* to *y*, and *q* is a path label from *y* to *z*, then p + q is a path label from *x* to *z*.

Consider the orbit equivalence relation induced by the action $V(L) \curvearrowright \mathcal{P}(V(L) \times X)$ by

$$p \cdot A = \{(q + p, x) \mid (q, x) \in A\}.$$

Consider the orbit equivalence relation induced by the action $V(L) \curvearrowright \mathcal{P}(V(L) \times X)$ by

$$p \cdot A = \{(q + p, x) \mid (q, x) \in A\}.$$

We have a reduction from E_T by

 $x \mapsto \{(p, y) \mid p \text{ is the unique path label from } x \text{ to } y, y E_T x\}.$

Consider the orbit equivalence relation induced by the action $V(L) \curvearrowright \mathcal{P}(V(L) \times X)$ by

$$p \cdot A = \{(q + p, x) \mid (q, x) \in A\}.$$

We have a reduction from E_T by

 $x \mapsto \{(p, y) \mid p \text{ is the unique path label from } x \text{ to } y, y E_T x\}.$

Two problems:

- 1. V(L) is not a Polish group
- 2. $\mathcal{P}(V(L) \times X)$ is far from a Polish space.

Problem 1: V(L) is not a Polish group

Instead, we use the free Banach space over *L* denoted B(L).

Equip V(L) with the mass transportation distance norm (explain visually). Then take B(L) to be the completion with respect to this norm, which is separable as long as L is.

Problem 2: $\mathcal{P}(B(L) \times X)$ is far from a Polish space.

Given a Polish space *Y*, then $\mathcal{F}(Y)$ denotes the space of all closed subsets of *Y* with the Effros Borel structure. Can be made Polish and natural continuous action $B(L) \curvearrowright \mathcal{F}(B(L) \times X)$.

Problem 2: $\mathcal{P}(B(L) \times X)$ is far from a Polish space.

Given a Polish space *Y*, then $\mathcal{F}(Y)$ denotes the space of all closed subsets of *Y* with the Effros Borel structure. Can be made Polish and natural continuous action $B(L) \curvearrowright \mathcal{F}(B(L) \times X)$.

Assume $\ell : L \to T$ is *stretched*, which means that d(p,q) > 1/4 for any two distinct path labels starting at *x*. Then

 $x \mapsto \{(p, y) \mid \ell(p) \text{ is the unique path label from } x \text{ to } y, y E_T x\}.$

is in fact a map from *X* to $\mathcal{F}(B(L) \times X)$.

Lemma 1

Let T be a locally-finite Borel tree on Polish X. Then there is a stretched Polish edge labeling $\ell : L \rightarrow T$.

By fixing a Borel linear order on *X* and by the fact that every standard Borel space can be made Polish, we have a Polish edge labeling $\ell_0 : L_0 \to T$.

Lemma 1

Let T be a locally-finite Borel tree on Polish X. Then there is a stretched Polish edge labeling $\ell : L \rightarrow T$.

By fixing a Borel linear order on *X* and by the fact that every standard Borel space can be made Polish, we have a Polish edge labeling $\ell_0 : L_0 \to T$.

For $n \in \omega$, let G^n be the graph on L_0 where l_0, l_1 are adjacent if there is a path of length at most 2^n between $\ell(l_0), \ell(l_1)$.

Each G_T^n is a locally finite Borel graph and thus has a countable proper Borel coloring $c_n : L_0 \to \omega$.

Let τ be a compatible Polish topology on L_0 in which each c_n is continuous.

Let $c: L_0 \to \omega^{\omega}$ be $c(l) = \langle c_n(l) \mid n \in \omega \rangle$.

Let τ be a compatible Polish topology on L_0 in which each c_n is continuous.

Let $c: L_0 \to \omega^{\omega}$ be $c(l) = \langle c_n(l) \mid n \in \omega \rangle$.

Now let *L* be the graph of *c* equipped with the product topology of τ and the usual topology on Baire space.

Let ℓ be the projection onto the first coordinate composed with ℓ_0 .

Given $x, y \in \omega^{\omega}$, let $d_B(x, y)$ be $1/2^n$ where *n* is least such that $x(n) \neq y(n)$.

Let d_0 be any compatible complete metric for (L_0, τ) . Then let $d((x, y), (x', y')) := d_0(x, x') + d_B(y, y')$

be the metric on *L*.

Given $x, y \in \omega^{\omega}$, let $d_B(x, y)$ be $1/2^n$ where *n* is least such that $x(n) \neq y(n)$.

Let d_0 be any compatible complete metric for (L_0, τ) . Then let

$$d((x,y),(x',y')) := d_0(x,x') + d_B(y,y')$$

be the metric on *L*.

Given a path label $p \in B(L)$ of length between 2^n and 2^{n+1} then for any l, l' appearing in the path we have $(l, l') \in G^{n+1}$ and thus $d(l, l') \ge 1/2^{n+1}$.

In particular, $||p|| \ge \frac{1}{2}[2^n \times 1/2^{n+1}] = 1/4$.

Every orbit equivalence relation induced by an abelian Polish group can be lifted to an action of ℓ_1 by Mackey-Hjorth [see e.g. [GP03]]

This completes the proof of the first result.

THE POSITIVE ANSWER

Theorem 4 (A.)

Any CBER classifiable by \mathbb{R}^{ω} is hyperfinite.

Follows from ideas of earlier result (further developing ideas from work of Ding-Gao on non-Archimedean abelian Polish groups)

Theorem 5 (A. [All23])

Any orbit equivalence relation that is Π_3^0 and classifiable by non-Archimedean abelian Polish group is Borel-reducible to E_0^{ω} .

combined with

Theorem 6 (Cotton [Cot19])

Any CBER classifable by a locally compact abelian Polish group is hyperfinite.

THE POSITIVE ANSWER

Using the Hjorth analysis of Polish group actions, we get

Proposition 1

Any orbit equivalence relation that is Π_3^0 and classifiable by a countable product of locally-compact abelian Polish groups is Borel-reducible to E_0^{ω} .

Then for the final result we just apply the following dichotomy theorem.

Theorem 7 (Hjorth-Kechris [HK97]) If $E \leq_B E_0^{\omega}$ then either $E \leq_B E_0$ or $E_0^{\omega} \leq_B E$.

FINAL THOUGHTS

Josh Frisch and Forte Shinko claim that with an additional step one can show that in fact every CBER is classifiable by ℓ_1 .

We don't know if there is an equivalence relation classifiable by a TSI Polish group but not by any abelian Polish group.

Countable Borel treeable equivalence relations are classifiable by ℓ_1 https://arxiv.org/abs/2305.01049

Thank you!

References I

- **S**. Allison, Countable borel treeable equivalence relations are classifiable by ℓ_1 .
- S. Allison, Non-archimedean TSI Polish groups and their potential Borel complexity spectrum, 2023.
- M. R. Cotton, *Abelian group actions and hypersmooth equivalence relations*, 2019, Ph.D. thesis at University of North Texas.
- L. Ding and S. Gao, *Non-archimedean abelian Polish groups and their actions*, Adv. Math. **307** (2017), 312–343.
- S. Gao and S. Jackson, *Countable abelian group actions and hyperfinite equivalence relations*, Invent. Math. **201** (2015), 309–383.
- S. Gao and V. Pestov, *On a universality property of some abelian Polish groups*, Fund. Math. **179** (2003), 1–15.

REFERENCES II

- G. Hjorth and A. S. Kechris, *New dichotomies for Borel equivalence relations*, Bull. Symbolic Logic **3** (1997), 329–346.
- S. Jackson, A. S. Kechris, and A. Louveau, *Countable Borel equivalence relations*, J. Math. Log. **2** (2002), 1–80.